Fisher® LCP100 Local Control Panel

Contents
Introduction .. 1
Scope of Manual ... 1
Description .. 2
Specifications ... 2
Educational Services 2
Installation ... 5
 Hazardous Area Classifications and Special
 Instructions for “Safe Use” and Installation
 in Hazardous Areas 5
 Mounting .. 8
 Electrical Connections 8
Pre-Setup Testing .. 27
Setup ... 28
Principle of Operation 29
Maintenance ... 30
 Troubleshooting ... 30
Parts Ordering ... 31
Parts List .. 31
Common Parts ... 31

Introduction

Scope of Manual

This instruction manual includes installation and maintenance information for the Fisher LCP100 local control panel (figure 1). This device is used with Fisher FIELDVUE™ instruments in Safety Instrumented Systems (SIS). Refer to the DVC6200 SIS Digital Valve Controllers for Safety Instrumented System (SIS) Solutions instruction manual (D103557X012) or the DVC6000 SIS Digital Valve Controllers for Safety Instrumented System (SIS) Solutions instruction manual (D103230X012) for additional information.

Unless otherwise noted, the information in this instruction manual applies to both DVC6200 SIS and DVC6000 SIS digital valve controllers. For simplicity, the DVC6200 SIS model name will be used throughout.
Do not install, operate, or maintain an LCP100 local control panel without being fully trained and qualified in valve, actuator, and accessory installation, operation, and maintenance. To avoid personal injury or property damage, it is important to carefully read, understand, and follow all of the contents of this manual, including all safety cautions and warnings. If you have any questions about these instructions, contact your Emerson Process Management sales office.

Description
The LCP100 local control panel is used with the HART® communicating DVC6200 SIS digital valve controller. This panel is used to manually open and close a safety shutdown valve. The LCP100 also provides a manual reset feature as well as a button for initiating a partial stroke test.

Specifications
Typical specifications for the LCP100 local control panel are shown in table 1.

Educational Services
For information on available courses contact:

Emerson Process Management
Educational Services - Registration
Phone: +1-641-754-3771 or +1-800-338-8158
e-mail: education@emerson.com
http://www.emersonprocess.com/education
Table 1. Specifications

<table>
<thead>
<tr>
<th>Power Options (switch selectable)</th>
<th>Other Classifications/Certifications</th>
</tr>
</thead>
</table>
| ■ External: 24 VDC +/- 10% @ 50 mA maximum continuous current (100 mA maximum inrush)
■ Loop: 8-20 mA (LCP100 and DVC6200 SIS combined) | CUTR—Customs Union Technical Regulations
(Russian, Kazakhstan, Belarus, and Armenia) |

<table>
<thead>
<tr>
<th>Temperature Limits(1)</th>
<th>Electrical Housing</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40 to 65°C (-40 to 149°F)</td>
<td>IP66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum distance between LCP100 and DVC6200 SIS digital valve controller</th>
<th>Electromagnetic Interference (EMI)</th>
</tr>
</thead>
</table>
| Cable length is limited by maximum cable capacitance of 100,000 pF(2). Typical 314 meters (1030 feet) with 18 AWG shielded Audio, Control and Instrumentation Cable. | Meets EN 61326-1 (First Edition)
Immunity—Industrial locations per Table 2 of EN 61326-1 Standard. Performance is shown in table 2 below.
Emissions—Class A
ISM equipment rating: Group 1, Class A |

Electrical Classification

| CSA | ATEX
Ex em IIC T4
Suitable for Zone 1 and Zone 2 locations |
| ATEX | Ex ia IIB T4 Ga
Suitable for Zone 0, Zone 1, and Zone 2 locations
Ex e mb [ib] IIC T4 Gb
Suitable for Zone 1 and Zone 2 locations
Ex ic IIC T4 Gc
Suitable for Zone 2 locations |
| IECEx | Ex ia IIB T4 Ga
Suitable for Zone 0, Zone 1, and Zone 2 locations
Ex e mb [ib] IIC T4 Gb
Suitable for Zone 1 and Zone 2 locations
Ex ic IIC T4 Gc
Suitable for Zone 2 locations |

Refer to Hazardous Area Classifications and Special Instructions for “Safe Use” and Installation in Hazardous Locations, starting on page 5, for specific approval information.

<table>
<thead>
<tr>
<th>Connections</th>
<th>Wiring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduit: 3/4 NPT or M20</td>
<td>14 to 26 AWG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torque Specifications</th>
<th>Electrical Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiring terminals: 0.5 N•m (4.5 in•lbs)</td>
<td>Wire connections are polarity sensitive</td>
</tr>
</tbody>
</table>

Compatibility

DVC6200 SIS with Firmware revision 3 or later
DVC6000 SIS with Firmware revision 7 or later

Installation Orientation

Wiring entrance must be pointed down for self-draining

Dimensions

253.1 mm (10 inches) long by 109.5 mm (4.3 inches) wide by 127.8 mm 5 inches) deep. See figure 2.

Construction Materials

Housing material: filled polyester

Approximate Weight

2.2 kg (4.9 lbs)

1. The pressure/temperature limits in this document and any applicable standard or code limitation should not be exceeded.
2. DVC6000 SIS: Cable length is limited by maximum cable capacitance of 18000 pF.
Table 2. Electromagnetic Immunity Performance Criteria

<table>
<thead>
<tr>
<th>Port</th>
<th>Phenomenon</th>
<th>Basic Standard</th>
<th>Test Level</th>
<th>Performance Criteria(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>Electrostatic discharge (ESD)</td>
<td>IEC 61000-4-2</td>
<td>± 4 kV contact</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 8 kV air</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiated EM field</td>
<td>IEC 61000-4-3</td>
<td>80 to 1000 MHz @ 10V/m with 1 kHz AM at 80%</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1400 to 2000 MHz @ 3V/m with 1 kHz AM at 80%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2000 to 2700 MHz @ 1V/m with 1 kHz AM at 80%</td>
<td></td>
</tr>
<tr>
<td>I/O signal/control</td>
<td>Burst (fast transients)</td>
<td>IEC 61000-4-4</td>
<td>± 1 kV, I/O lines</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2 kV, DC power lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surge</td>
<td>IEC 61000-4-5</td>
<td>± 1 kV, I/O lines</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>± 2 kV, DC power lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conducted RF</td>
<td>IEC 61000-4-6</td>
<td>150 kHz to 80 MHz at 3 Vrms with 1 kHz AM at 80%</td>
<td>A</td>
</tr>
</tbody>
</table>

Specification limit = ±1% of span
1. A = No degradation during testing. B = Temporary degradation during testing, but is self-recovering.

Figure 2. Fisher LCP100 Local Control Panel Dimensions

![Diagram of LCP100 Local Control Panel Dimensions]
Installation

⚠️ WARNING

Electrostatic charge hazard. Do not rub or clean the LCP100 with solvents if a flammable vapor is present. To do so could result in an explosion.

Note
Direct all wiring to the left side inside the LPC100 compartment, away from the buttons.

Hazardous Area Classifications and Special Instructions for “Safe Use” and Installation in Hazardous Locations

Certain nameplates may carry more than one approval, and each approval may have unique installation/wiring requirements and/or conditions of “safe use”. These special instructions for “safe use” are in addition to, and may override, the standard installation procedures. Special instructions are listed by approval.

⚠️ WARNING

Failure to follow these conditions of “safe use” could result in personal injury or property damage from fire or explosion, and area re-classification.

Note
This information supplements the nameplate markings affixed to the product. Always refer to the nameplate itself to identify the appropriate certification.

Contact your Emerson Process Management sales office for approval/certification information not listed here.
CSA
Ex em II C, IP66
Rated 30 VDC maximum; 100 mA maximum; temperature code rating T4, ambient temperature range -40°C to 65°C

Special Conditions of Use
1. Install in an area that has a low risk of mechanical damage.
2. Install the cover, tightening the screws evenly in a criss-cross pattern, such as the one indicated in figure 3, to a torque of 2.82 N•m (25 lbf•in) to help ensure the cover is properly installed.

Figure 3. Proper Cover Installation

NOTE: TIGHTEN THE SCREWS IN A CRISS-CROSS PATTERN TO HELP ENSURE PROPER COVER INSTALLATION.
ATEX

- II 1G Ex ia IIB T4 Ga
- II 2G Ex e mb [ib] IIC T4 Gb
- II 3G Ex ic IIC T4 Gc

IECEX

- Ex ia IIB T4 Ga
- Ex e mb [ib] IIC T4 Gb
- Ex ic IIC T4 Gc

Ta = -40°C to +65°C
IP66

Ex ia IIB

Standards Used for Certification

IEC 60079-0:2011 EN 60079-0:2012

Entity parameters

Refer to drawing GE75327, shown in figure 21, 22, and 23.

Special Conditions for Safe Use

1. The 24 VDC input terminals shall not be used.
2. Under certain extreme circumstances, the plastic enclosure may store an ignition-capable level electrostatic charge. Precautions shall be taken to prevent the build up of electrostatic charge by charge-generating mechanisms, e.g. do not rub with a solvent, as indicated on the product nameplate.

Ex ic IIC and Ex e mb [ib] IIC

Standards Used for Certification

Entity parameters

Ex ic IIC

Ui = 27 VDC
Ci = 1.1 nF
Li = 0

Special Conditions for Safe Use

1. For Ex ic installations, it is not permitted to connect separate supplies to the LOOP+/LOOP- and AUX+/LOOP- terminals.
2. If the equipment is installed in a zone 2, the installer shall take suitable steps to indicate whether the equipment is installed as Ex e mb [ib] or Ex ic.
Mounting

Refer to figure 2 for dimensional information. The LCP100 local control panel has four (4) mounting holes for on-site mounting of the device. The LCP100 must be installed so that the wiring connections are on the bottom to prevent accumulation of moisture inside the box.

Electrical Connections

⚠️ WARNING

Select wiring and/or cable glands that are rated for the environment of use (such as hazardous location, ingress protection, and temperature). Failure to use properly rated wiring and/or cable glands can result in personal injury or property damage from fire or explosion. Wiring connections must be in accordance with local, regional, and national codes for any given hazardous area approval. Failure to follow the local, regional, and national codes could result in personal injury or property damage from fire or explosion.

Refer to the appropriate wiring diagram, as defined in table 3, based on your protection method and installation requirements. Also refer to figure 4 for LCP100 switch setting, terminal connections, and label details and information, as well as DVC6200 SIS terminal box details.

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
<th>Refer to figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>Point-to-Point</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Ex ic IIC LOOP 24 VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24 VDC</td>
<td>Point-to-Point</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Ex ia IIB LOOP 24 VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Wiring Configurations with DVC6200 SIS Digital Valve Controller
Note
For intrinsically safe applications, the LCP100 forms an intrinsically safe explosion protection system when used with intrinsically safe associated apparatus (a barrier) or with any other intrinsically safe devices.

The following requirements must be met: \(U_0 \leq U_i, I_0 \leq I_i, P_0 \leq P_i, C_0 \geq C_i + C_c, L_0 \geq L_i + L_c \).

When installing the cover, tighten the screws evenly in a criss-cross pattern such as the one indicated in figure 3, to a torque of 2.82 N·m (25 lbf·in), to help ensure the cover is properly installed.

Figure 4. Interior Details of Fisher LCP100 and FIELDVUE DVC6200 SIS
Figure 5. Ex eb [ib] IIC Wiring Diagram 1

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex eb [ib] IIC</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 6. Ex e mb [ib] IIC Wiring Diagram 2

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 7. Ex e mb [ib] IIC Wiring Diagram 3

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.

2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 8. Ex e mb [ib] IIC Wiring Diagram 4

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 9. Ex e mb [ib] IIC Wiring Diagram 5

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC</td>
<td>24VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. WHEN 24VDC POWER IS AVAILABLE FOR THE LCP100, IT IS NOT NECESSARY TO CONNECT THE LOOP+ OF THE DIGITAL VALVE CONTROLLER TO THE LOOP+ OF THE LCP100. DOING SO WILL CAUSE THE LCP100 TO UNNECESSARILY CONSUME 4 mA AT THE EXPENSE OF THE DIGITAL VALVE CONTROLLER.

2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 10. Ex e mb [ib] IIC Wiring Diagram 6

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex e mb [ib] IIC</td>
<td>24VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:

1. WHEN 24VDC POWER IS AVAILABLE FOR THE LCP100, IT IS NOT NECESSARY TO CONNECT THE LOOP + OF THE DIGITAL VALVE CONTROLLER TO THE LOOP + OF THE LCP100. DOING SO WILL CAUSE THE LCP100 TO UNNECESSARILY CONSUME 4 mA AT THE EXPENSE OF THE DIGITAL VALVE CONTROLLER.

2. FOR FLAMEPROOF/EXPLOSION-PROOF APPROVED DIGITAL VALVE CONTROLLERS, INSTALL CONDUIT SEALS OR FLAMEPROOF CABLE GLANDS AS REQUIRED TO MAINTAIN THE FLAMEPROOF/EXPLOSION-PROOF INTEGRITY OF THE DEVICE.
Figure 11. Ex ic IIC Wiring Diagram 1

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ic IIC</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 12. Ex IIC Wiring Diagram 2

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex IIC</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:
1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 13. Ex ic IIC Wiring Diagram 3

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ic IIC</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.

2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 14. Ex ic IIC Wiring Diagram 4

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ic IIC</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:
1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 15. Ex ic IIC Wiring Diagram 5

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ic IIC</td>
<td>24VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. **WHEN 24 VDC POWER IS AVAILABLE FOR THE LCP100, IT IS NOT NECESSARY TO CONNECT THE LOOP + OF THE DIGITAL VALVE CONTROLLER TO THE LOOP + OF THE LCP100. DOING SO WILL CAUSE THE LCP100 TO UNNECESSARILY CONSUME 4 mA AT THE EXPENSE OF THE DIGITAL VALVE CONTROLLER.**

2. **REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.**
Figure 16. Ex ic IIC Wiring Diagram 6

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ic IIC</td>
<td>24VDC</td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:
1. WHEN 24 VDC POWER IS AVAILABLE FOR THE LCP100, IT IS NOT NECESSARY TO CONNECT THE LOOP + OF THE DIGITAL VALVE CONTROLLER TO THE LOOP + OF THE LCP100. DOING SO WILL CAUSE THE LCP100 TO UNNECESSARILY CONSUME 4 mA AT THE EXPENSE OF THE DIGITAL VALVE CONTROLLER.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 17. Ex ia IIB Wiring Diagram 1

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIB</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.

2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 18. Ex ia IIB Wiring Diagram 2

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIB</td>
<td>LOOP</td>
<td>DVC6200 SIS then LCP100</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 19. Ex ia IIB Wiring Diagram 3

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIB</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Point-to-Point</td>
</tr>
</tbody>
</table>

NOTES:

1. THE LOGIC SOLVER MINIMUM OUTPUT MUST BE 8 mA. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.

2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 20. Ex ia IIB Wiring Diagram 4

<table>
<thead>
<tr>
<th>LCP100 Protection Method</th>
<th>LCP100 Power Source</th>
<th>Wiring Order from Logic Solver</th>
<th>DVC6200 SIS Mode (Current or Voltage)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex ia IIB</td>
<td>LOOP</td>
<td>LCP100 then DVC6200 SIS</td>
<td>Multi-Drop</td>
</tr>
</tbody>
</table>

LOOP TERMINALS:
- \(U_i = 30 \text{ VDC} \)
- \(L_i = 226 \text{ mA} \)
- \(P_i = 1.4 \text{ W} \)
- \(C_i = 0.22 \mu \text{F} \)
- \(L_i = 16.0 \mu \text{H} \)

AUX TERMINALS:
- \(U_i = 30 \text{ VDC} \)
- \(L_i = 452 \text{ mA} \)
- \(P_i = 1.4 \text{ W} \)
- \(C_i = 0 \mu \text{F} \)
- \(L_i = 0 \mu \text{H} \)

NOTES:
1. THE LCP100 WHEN POWERED BY THE LOOP CONSUMES APPROXIMATELY 4 mA.
2. REFER TO THE DVC6200 SERIES QUICK START GUIDE (D103556X012) FOR SCHEMATICS AND ENTITY PARAMETERS.
Figure 21. Wiring Configuration from Barrier to Fisher DVC6200 SIS to LCP100 - Loop-Powered Only (Drawing GE75327) (See Notes in Figure 22)

Figure 22. Schematic Notes for Figure 21 and Figure 23

NOTES:

1. FOR Ex ia APPLICATIONS THE FOLLOWING INFORMATION SHALL BE OBSERVED.
 a) THE POWER SELECTOR Switch MUST BE POSITIONED IN THE “LOOP” MODE POSITION.
 b) NO WIRING CONNECTIONS SHALL BE MADE TO THE 24 VDC POWER TERMINALS.
 c) THE OVERALL GAS GROUP RATING OF THE INTRINSICALLY SAFE CIRCUIT WILL BE LOWEST GAS GROUPING OF ALL APPARATUS FORMING THE CIRCUIT. FOR EXAMPLE, A CIRCUIT WITH BOTH IIB AND IIC APPARATUS WILL HAVE AN OVERALL CIRCUIT GAS RATING OF IIB.
 d) THE LEVEL OF PROTECTION OF THE INTRINSICALLY SAFE CIRCUIT WILL BE THE LOWEST LEVEL OF ALL APPARATUS FORMING THE CIRCUIT. FOR EXAMPLE, A CIRCUIT WITH BOTH “ia” AND “ib” WILL HAVE AN OVERALL PROTECTION RATING OF “ib”.

2. THE PERMISSIBLE INPUT VOLTAGE Ui, INPUT CURRENT Ii AND INPUT POWER Pi OF EACH APPARATUS SHALL BE GREATER THAN OR EQUAL TO THE OUTPUT VOLTAGE Uo, OUTPUT CURRENT Io, AND OUTPUT POWER Po OF THE ASSOCIATED APPARATUS (BARRIER).

3. INSTALLATION OF THE LCP100 IS SUCH THAT ITS LOOP TERMINALS WILL BE CONNECTED IN PARALLEL WITH OTHER INTRINSICALLY SAFE APPARATUS LOOP TERMINALS. THE WIRING COMING FROM THE BARRIER INTO THE HAZARDOUS LOCATION MAY BE TERMINATED AT EITHER THE INTRINSICALLY SAFE APPARATUS, AS SHOWN IN FIGURE 21 OR AT THE LCP100, AS SHOWN IN FIGURE 23.
Pre-Setup Testing

Before connecting the LCP100 to the process, conduct the following tests on the LCP100 connected to the DVC6200 SIS.

Successful Partial Stroke Test

1. Press the Valve Test (bottom) pushbutton for more than 3 seconds (but less than 10 seconds).
2. Observe that the green light starts flashing when the valve starts moving.
3. Observe that the valve moves no more than the configured partial stroke test travel limit.
4. Observe that the valve returns to the normal operating position and the green light comes on solid.
Manually Aborted Partial Stroke Test
1. Press the Valve Test (bottom) pushbutton for more than 3 seconds (but less than 10 seconds).
2. Observe that the green light starts flashing when the valve starts moving.
3. Before the valve reaches the travel limit of the configured partial stroke test, press the Valve Test pushbutton, or the pushbutton next to the green light.
4. Observe that the valve immediately returns to the normal operating position and the green light comes on solid.

Emergency Demand through the Logic Solver
1. Reduce the current to the DVC6200 SIS to 4 mA (for de-energize to trip operation).

Note
For a loop powered installation, a minimum current of 8 mA is required at the trip state / “Safety Demand” for proper functioning of the pushbuttons and lights.

2. Observe that the valve moves to its fail safe state.
3. Observe that the red light comes on solid and the yellow light stays off.
4. Press the pushbutton next to the green light and observe that the valve does not move.
5. Increase the current to the DVC6200 SIS to 20 mA (for de-energize to trip) and observe that the valve remains in its fail safe state.
6. Observe that the red light stays on solid and the yellow light comes on solid (ready to reset).
7. Press the pushbutton next to the green light.
8. Observe that the red light goes off, the valve moves to its normal operating position, and then the green light comes on solid.

Emergency Demand through Local Control Panel
1. Press the pushbutton next to the red light.
2. Observe that the valve moves to it fail safe position.
3. Observe that the red light comes on solid and the yellow light comes on solid (ready to reset).
4. Press the pushbutton next to the green light.
5. Observe that the red light goes off, the valve moves to its normal operating position, and then the green light comes on solid.

Setup
In order for the LCP100 to operate properly, it must be connected to a DVC6200 SIS with firmware revision 3 or later, or a DVC6000 SIS device with firmware revision 7 or later. Once the physical connections are made, use the following checklist to configure the LCP100. Refer to the DVC6200 SIS instruction manual (D103557X012) or the DVC6000 SIS instruction manual (D103230X012) if additional setup information is needed.

- Using a 475 Field Communicator select Configure > Guided Setup > Device Setup. Follow the prompts on the Field Communicator:

Enter Supply Pressure and Unit
Enter Actuator Make, Model, and Size
Enter Partial Stroke test Starting Point, Relay Type and Zero Power Condition [select the "instrument connected to local control panel (LCP100)" option]

- Follow the prompts to complete Device Setup. The following parameters will be automatically set under Travel Alerts:
 - Hi Hi / Lo Lo Enable - Yes
 - Lo Lo Point (%) - 1
 - Hi Hi Point (%) - 99
 - Deadband (%) - 0.5
 - DVC Power Up - Manual Reset

- Continue to set up the digital valve controller according the normal set up procedure.
- Remember to place the instrument back in service before disconnecting.

Note
An alternative method to configure the LCP100 is through Manual Setup. Using the Field Communicator, select Configure > Manual Setup > Instrument > Terminal Box > Edit Auxiliary Terminal Action > SIS Local Control Panel. When this setting is downloaded to the device, an information screen will pop up advising that some additional parameters will be configured. Select Yes.

Principle of Operation
The lights indicate the state of the valve as described in table 4.

Table 4. Fisher LCP100 Light and Button Operation

<table>
<thead>
<tr>
<th>WHAT THE LCP100 LIGHTS SHOW...</th>
<th>POSSIBLE CONDITIONS...</th>
<th>PRESS INDICATED BUTTON TO...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Solid</td>
<td>The valve is in its normal operating state.</td>
<td>- - - Trip Run PST</td>
</tr>
<tr>
<td>Fast Blink (1/2 second)</td>
<td>The valve is in the process of running a partial stroke test (PST).</td>
<td>Stop PST Trip Stop PST</td>
</tr>
<tr>
<td></td>
<td>The valve is not at its normal operating position because the actuator pressure is low or the valve is stuck.</td>
<td>Acknowledge PST Failure Trip Run PST</td>
</tr>
<tr>
<td></td>
<td>The valve is tripped but is stuck at the normal position.</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Slow Blink (1 second)</td>
<td>A partial stroke test has failed.</td>
<td>Acknowledge PST Failure Trip Run PST</td>
</tr>
<tr>
<td>Red</td>
<td>The valve is tripped due to loss of actuator pressure (e.g., solenoid valve trip)</td>
<td>Acknowledge PST Failure Trip Run PST</td>
</tr>
<tr>
<td>Solid</td>
<td>The valve is tripped due to a command from the logic solver or LCP100.</td>
<td>- - - - - -</td>
</tr>
<tr>
<td></td>
<td>The valve is stuck in the tripped state.</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Fast Blink (1/2 second)</td>
<td>The valve is at mid-travel after a trip. The valve may be moving or stuck in this position.</td>
<td>- - - - - -</td>
</tr>
<tr>
<td>Yellow</td>
<td>The valve may be reset to the normal operating state.</td>
<td>Reset to Normal State - - -</td>
</tr>
</tbody>
</table>

Notes:
1. If the green, red, and yellow lights are blinking in sequence, then the DVC6200 SIS is out of service. In point-to-point mode, the DVC6200 SIS will not respond to a trip from the logic solver.
2. Depending on the emergency shutdown valve configuration, the top button could be labeled “Valve Open” and the middle button could be labeled “Valve Close”; or vice versa. The bottom button will always be labeled “Valve Test”.
3. Acknowledgment of a PST failure means that the LCP100 will return the blinking green light to solid green. The PST alert will still be visible via HART communication with the DVC6200 SIS.
4. If the red and green lights are both solid the valve is throttling in mid-travel.
5. The information contained in this table applies to firmware 9 and later.
Note
The primary safety function should be implemented by controlling the current (in point-to-point mode) or voltage (in multi-drop mode) from the logic solver. The red button is not intended to perform the primary safety function for the process.

Maintenance

⚠️ WARNING
Electrostatic charge hazard. Do not rub or clean the LCP100 with solvents if a flammable vapor is present. To do so could result in an explosion.

The LCP100 has four major components; the housing, lights, conduit connections, and electronics. If a light is not working it can be replaced with the appropriate color. The conduit connections do not normally need replacement. The electronics module can be replaced as an assembly without having to disconnect the conduit connections or remove the box from its mounting.

Instrument Troubleshooting

If difficulties are experienced with the LCP100 control panel, refer to table 5.

Table 5. Instrument Troubleshooting

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lights are not lit.</td>
<td>1. LCP100 is not properly connected to the digital valve controller aux. terminal.</td>
<td>1. Ensure that the LCP100 is connected correctly to the digital valve controller aux. terminal, as described in the Installation section of this manual.</td>
</tr>
<tr>
<td>2. LCP100 is properly connected to the digital valve controller aux. terminal, but the lights are not lit.</td>
<td>2. Power switch is not set correctly.</td>
<td>2. Ensure that the power switch is set correctly. If Loop Power is used, ensure that the switch position is set to Loop Power, and NOT 24 VDC, and vice versa.</td>
</tr>
<tr>
<td>3. The power switch is set correctly, but the lights are not lit.</td>
<td>3. Loop Power option is selected, but there is not enough current.</td>
<td>3. The Loop Power Option requires 8 mA current to operate. Ensure that there is sufficient current.</td>
</tr>
<tr>
<td>4. The LCP100 and the digital valve controller are properly connected, and there is sufficient current but the lights are not lit.</td>
<td>4. The LED may be damaged.</td>
<td>4. Replace LED.</td>
</tr>
<tr>
<td>5. Lights are blinking.</td>
<td>5. Valve is not at it’s normal stop.</td>
<td>5. Check for proper calibration. Re-run calibration if necessary.</td>
</tr>
<tr>
<td>6. Proper calibration but lights are blinking.</td>
<td>6. Hi Hi / Lo Lo alerts settings not correctly set.</td>
<td>6. Ensure that the Hi Hi / Lo Lo Alert settings are 99 and 1% respectively. For large rotary valve, adjust settings to 98 and 2% and observe.</td>
</tr>
</tbody>
</table>
Parts Ordering

When corresponding with your Emerson Process Management sales office about this equipment, mention the serial number found on the nameplate of the unit.

WARNING

Use only genuine Fisher replacement parts. Components that are not supplied by Emerson Process Management should not, under any circumstances, be used in any Fisher instrument. Use of components not supplied by Emerson Process Management may void your warranty and hazardous area approval, might adversely affect the performance of the instrument, and could cause personal injury and property damage.

Parts Kits

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED Assemblies Kit (see figure 25)</td>
<td>GE25751X012</td>
</tr>
<tr>
<td>Includes LED’s (qty. 3); Yellow, Red, and Green (keys 11*, 12*, and 13*) and fasteners (qty. 6) (key 8)</td>
<td></td>
</tr>
<tr>
<td>Enclosure Labels Kit</td>
<td>GE25750X012</td>
</tr>
<tr>
<td>Includes labels (qty. 6); OPEN, CLOSED, VALVE OPEN, VALVE CLOSE, READY TO RESET, and VALVE TEST</td>
<td></td>
</tr>
<tr>
<td>Switch Cover Kit</td>
<td>GE23730X022</td>
</tr>
<tr>
<td>Includes switch actuator shroud cover (qty. 3) and Enclosure Labels (qty. 6); OPEN, CLOSED, VALVE OPEN, VALVE CLOSE, READY TO RESET, and VALVE TEST</td>
<td></td>
</tr>
</tbody>
</table>

Parts List

Common Parts (see figure 24)

<table>
<thead>
<tr>
<th>Key</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3/4 NPT Conduit (2 req’d)</td>
</tr>
<tr>
<td>5</td>
<td>Machine Screw (4 req’d)</td>
</tr>
<tr>
<td>9*</td>
<td>Electronics Module</td>
</tr>
</tbody>
</table>

*Recommended spare parts
Figure 25. Key 9, Electronics Module